APLICACIONES DE ECUACIONES LINEALES


Modelos de costo lineal


En la producción de cualquier bien por una empresa, intervienen dos tipos de costos; que se conocen como costos fijos y costos variables. A los costos fijos hay que
enfrentarse sin importar la cantidad producida del artículo; es decir, no dependen del nivel de producción. Ejemplos de costos fijos son las rentas, intereses sobre préstamos y salarios de administración.
Los costos variables dependen del nivel de producción; es decir, de la cantidad de artículos producidos. Los costos de los materiales y de la mano de obra son ejemplos de costos variables. El costo total está dado por.

Costo total = Costos variables + Costos fijos

Consideremos el caso en que el costo variable por unidad del artículo es constante. En este caso, los costos variables totales son proporcionales a la cantidad de artículos producidos. Si m denota el costo variable por unidad, entonces los costos variables totales al producir x unidades de artículos son de mx dólares. Si los costos fijos son de b dólares, se desprende que el costo total yc (en dólares) de producir x unidades está dado por.
EJEMPLO 1 (Modelo de costo lineal) El costo variable de procesar un kilo de granos de café es de 50¢ y los costos fijos por día son de $300.
a) Dé la ecuación de costo lineal y dibuje su gráfica.
b) Determine el costo de procesar 1000 kilos de granos de café en un día.
Solución
Haciendo x = 0 en la ecuación (2), tenemos que y =300; haciendo x = 200en la ecuación (2), tenemos que yc = 0.5(200) + 300 =400. De modo que dos puntos que satisfacen la ecuación de costo (2) son (0, 300) y (200, 400). Graficando estos dos puntos y uniéndolos mediante una línea recta, obtenemos la gráfica que aparece en la figura 18. Nótese que la porción relevante de la gráfica está situada por completo en el primer cuadrante porque x y yc no pueden ser cantidades negativas.

Depreciación lineal
Cuando una compañía compra parte de un equipo o maquinaria, reporta el valor de ese equipo como uno de los activos en su hoja de balance. En años subsecuentes, este valor debe disminuir debido al lento desgaste del equipo, o bien, a que se vuelve obsoleto. Esta reducción gradual del valor de un activo se denomina depreciación.
Un método común de calcular el monto de la depreciación es reducir el valor cada año en una cantidad constante, de forma tal que el valor se reduzca a un valor de desecho al final del tiempo de vida útil estimado del equipo. Esto se denomina depreciación lineal
Tasa de depreciación (anual)(Valor inicial - Valor de desecho) /(Tiempo de vida en años)
Es un hecho perfectamente conocido que si el precio por unidad de un artículo aumenta, la demanda por el artículo disminuye, porque menos consumidores podrán adquirirlo, mientras que si el precio por unidad disminuye (es decir, el artículo se abarata) la demanda se incrementará. En otras palabras, la pendiente m de la relación de demanda de la ecuación (1) es negativa. De modo que la gráfica de la ecuación tiene una inclinación que baja hacia la derecha, como se aprecia en la parte ade la figura 21. Puesto que el precio p por unidad y la cantidad x demandada no son números negativos, la gráfica de la ecuación (4) sólo debe dibujarse en el primer cuadrante.

La cantidad de un artículo determinado que sus proveedores están dispuestos a ofrecer depende del precio al cual puedan venderlo. Una relación que especifique la cantidad de cualquier artículo que los fabricantes (o vendedores) puedan poner en el mercado a varios precios se denomina ley de la oferta. La gráfica de una ecuación de la oferta (o ley de la oferta) se conoce como curva de la oferta.
Tasa de sustitución
Con frecuencia, los planeadores tienen que decidir entre diferentes maneras de asignar recursos limitados. Por ejemplo, un fabricante tiene que asignar la capacidad de
la planta entre dos productos diferentes. Si la relación entre las cantidades de los dos productos es lineal, la pendiente de su gráfica puede interpretarse como la tasa de sustitución de un producto por otro. Considere el ejemplo siguiente.

No hay comentarios.:

Publicar un comentario